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1. Introduction

Monitoring a comprehensive test ban treaty involves the difficult problem of differentiating
the seismic signal of nuclear events from the overwhelming amount of seismic signals from
earthquakes, mining explosions, etc. This problem is made even more difficult due to the
lack of information concerning the behavior of nuclear signals. Furthermore, in many

regions, little information is available on the background events.

Wang, et. al. (1996) frame the problem of detecting nuclear events in terms of detecting
outliers (nuclear events) from a mixture population (earthquakes, mining explosions, etc.).
The authors develop a modified likelihood ratio test that requires no distributional
assumptions concerning the outlier distribution, which is a powerful practical solution to
the lack of well established training samples for nuclear events. Using the bootstrap to
model the distribution of the test statistic and calculate critical values, the authors show
this modified test is as powerful as the standard likelihood test in which complete
information concerning the distribution of the outlier population is known. However, the
training data used to model the mixture distribution was assumed to be "pure”, meaning
that information concerning the source of the events in the training data is assumed to be
known. A brief summary of the test statistic and the bootstrap procedure is given in

Appendix B.

In this report, the problem of detecting the rare seismic signal from events in new or
relatively unexplored regions is studied. Extending the work of Wang, et. al. (1996), a two
stage procedure is introduced that first examines a potential training sample from a
previously unexplored region for potential outliers, readying the training sample for testing

new data. Second, additional information is incorporated in an attempt to identify the



sources of the events in the training sample for research purposes. However, we should
stress in this approach introduced here, it is not necessary to be able to label events. The

only assumption made regarding the nature of previous events is that none of them are

nuclear events.
2. The Procedure

In this section, the procedure for screening data about which little information about the
source of the events is known, such as data collected from a new region of interest, is
developed. The data are assumed to be uncontaminated, i.e. containing no nuclear events,
and are known to contain a fixed number of groups. These groups represent the types of
non-nuclear seismic activity in a region. Examples include earthquakes and mining blasts.
The data can include any number of characteristics calculated from the seismic signals. A

flowchart of the procedure is given in Figure 1.

The first step involves clustering the data using the method of hierarchical clustering
discussed in Appendix A. After the clustering stage, initial estimates of the parameter
values are calculated from the estimated group membership. It is possible that in certain
situations, particularly when the groups in the training sample overlap, the clustering
algorithm will return one or more clusters that are considerably smaller than is reasonable. |
In such cases, these small clusters are temporarily set aside, and the remaining data is used

to form clusters and estimate initial parameters.

Now, each point is considered individually by the using the other n — 1 points as a pseudo
training sample. The modified likelihood test developed in Wang, et. al. (1996) is used to

test each point and determine the probability that each point belongs to the assumed
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mixture population. Any point with a significant result (probability of inclusion in the
mixture is small) at this phase is labeled an outlier and removed from the future training
data. The other points tested as belonging to the mixture can now be used as a "clean"

training data set for testing inclusion of future events in the mixture.

2.1 Example

The data for this example are the result of an analysis of earthquakes and mining
explosions from the Vogtland region near the Czech-German border done by Relu Burlacu
and Fugene Herrin from the Department of Geological Sciences at the Southern
Methodist University. These data were taken from the ground truth database put together
by Grant, et. al. (1993). The procedure used to generate the measurements is new to the
seismic community and involves fitting a low-order (usually third) autoregressive process
to the Lg-phase of the waveform. The power spectral density is estimated and the strength
and frequencies of the real and complex poles are calculated. Burlacu and Herrin report
that a characteristic pattern appears, namely that distributed surface explosions tend to be
lower frequency with a sharper spectrum (strong pole) and that earthquakes tend to have
higher frequencies and a more distributed spectrum (weak pole). These features are
incorporated into a promising screening process to identify mining blasts. Here, the

complex frequency and pole strength are used to demonstrate this new algorithm.

Table 1 contains information on the events used in this study and Figure 2 shows a
scatterplot of the complex frequency and pole for each event (plotting characters indicate
event number). Note that event number 25 is listed in the ground truth data base as an
explosion, although some controversy has surrounded this event. For this example, the

ground truth information is not used. Rather, the source for each event is assumed to be



Date 2 M Or. time

03119 .20 .98 :03:24 X

2 032191  50.207 2.05 12:04:15 X

3 032291 50.207 2.03 12:33:25 X

4 032391 50.207 1.99 12:00:56 X

5 032491 50.296 . 2.18 05:05:04 Q

6 032491 50.279 12.9 1.50 05:35:21 Q

7 032491 50.277 13.9 1.40 06:57:59 Q

8 032491 50.278 12.4 1.65 09:38:33 Q

9 032491 50.294 12.7 2.07 14:33:28 Q

10 032491 50.293 12.5 1.80 15:00:45 Q
11 032491 50.293 9 1.73 15:41:04 Q
12 032591 50.298 12.9 2.37 14:54:14 Q
13 032591 50.292 12.4 1.54 22:31:46 Q
15 050291 50.207 0 1.93 11:06:10 X
19 051991 50.360 0 2.06 03:22:10 Q
20 052391 50.207 0 2.12 11:01:05 X
21 052591 50.207 0 2.13 11:01:29 X
23 052891 50.207 0 2.01 11:03:51 X
24 062091 50.207 0 1.98 11:01:17 X
25 062091 50.293 0 1.80 11:45:35 X
26 062291 50.207 0 2.15 10:58:34 X
27 062791 50.207 0 1.93 11:04:40 X

~
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unknown, although it is assumed that the data set is composed of observations from two

sources (earthquake and mining blast). Finally, it is also assumed that no nuclear events

are present in the sample.

Figure 3 shows the result of the cluster analysis. The members of each cluster are
indicated on the plot (as a "1" or a "2") as well as a 95% contour for each component
normal distribution using the parameters estimated from the results of the cluster analysis.
Note that the labeling of clusters is arbitrary and does not indicate the source of the event.
These data show a clear separation between the groups. Hence only one iteration of the

cluster analysis is necessary.

Figure 4 shows the results of the leave-one-out testing orocedure. Plotted are the p-values
for being in the mixture associated with each frequency and pole pair (plotting characters
indicate p-value). Note that only event 25 shows a significant result (p-value = 0.01),
which leads to the conclusion that event 25 is an outlier to the mixture distribution of
earthquakes and explosions. Results for all other points support their membership in the

mixture and are consistent with the ground truth information.

New data values in this region could now be tested using this "clean" data. In fact, Figure
5 shows contours representing effective rejection regions (a = 0.1, 0.05, 0.01) based on
this training sample. Note that these regions mirror the shape of the distributions

suggested by the data.
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Appendix A: Hierarchical Clustering

Clustering is the process of grouping similar objects on the basis of characteristics of the
objects. The process is also referred to as classification or pattern recognition. For a
general treatment of the subject, see, for example, Seber (1984) or any textbook on

multivariate statistics.

Two basic types of clustering algorithms exist. The first is hierarchical clustering, which is
an iterative technique involving the grouping of smaller clusters into larger ones until the
desired number of clusters has been achieved. The second type partitions objects into non-
overlapping groups by setting the number of clusters, choosing initial locations of the
clusters, and then assigning points to one of the groups according to some pre-specified
criterion. In this work, a two-stage approach to clustering is taken. First, a hierarchial
approach is used to obtain initial parameter estimates of the clustering. Then, in some
cases, a procedure similar in nature to the k-means approach of Hartigan (1975) is used to

refine the parameter estimates if necessary.

The clustering algorithm begins by considering each of the  data points as an individual
cluster. Then, the two points nearest to each other are combined to form n — 1 clusters.
The procedure continues by combining or fusing the two clusters that are the most similar
at each iteration. Here, similarity is a distance measure that is calculated in a variety of
ways. The three most common measures of similarity are single linkage (nearest neighbor),
complete linkage (farthest neighbor), or the nearest centroid measure. For single linkage,
the similarity between two clusters is measured as the smallest distance between a point of
one cluster and a point of another. On the other hand, complete linkage measures

similarity between two clusters as the largest distance between a point of one cluster and a

12



point of another. The centroid method measures similarity as the distance between the

centroids or means of the points in each cluster.

Both the single and complete linkages suffer from the extreme nature of the measure of
similarity. Single linkage causes clusters formed by a single individual to be more likely to
join another established cluster rather than forming the nucleus of a new cluster. This
phenomenon, known as "chaining,” leads to clusters that are formed of smaller groups
linked together by intermediates. Complete linkage yields the opposite effect as individuals
are more likely to form a new cluster than join established ones. This has the potential to
yield clusters that are formed of points that do not really belong together. The centroid
method is more robust than either of these two measures and is less subject to these
problems in the formation of clusters. Hence, the centroid method is the measure adopted

in this work.
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Appendix B

A New Test for Outlier Detection from
a Multivariate Mixture Distribution

Suojin Wang, Wayne A. Woodward, H.L. Gray, Stephen Wiechecki, and Stephan Sain

ABSTRACT

The problem of testing an outlier from a multivariate mixture distribution of several
populations has many important applications in practice. One particular example is I
monitoring worldwide nuclear testing, where we wish to detect whether an observed event is
possibly a nuclear explosion (an outlier) by comparing it with the training samples from mining
blasts and earthquakes. The combined population of seismic events from mining blasts and
carthquakes can be viewed as a mixture of two populations. The classical likelihood ratio test
appears to be not applicable to our problem, and in spite of the importance of this problem,
little progress has been made in the literature. In this report we propose a simple modified
likelihood ratio test that overcomes the difficulties in the current problem. Bootstrap
techniques are used to approximate the distribution of the test statistic. The advantages of the
new test are demonstrated via simulation studies. Some new computational findings are also

reported.

This research was partially supported by ARPA Contracts F19628-93-C-0199 and F1928-95-
C-0098, NSF Grant DMS-9504589, an NSA grant and Texas A&M Scholarly and Creative
Activities Program 95-59. We would like to acknowledge Steve Sain for producing the
graphics for the figures.
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1. Introduction

An extremely important practical problem is that of monitoring worldwide nuclear testing,
where we wish to detect whether an observed seismic event may be a nuclear explosion by
comparing it with the training samples obtained from previous seismic activity in the region. In
this case, the training data will often be composed of data which are a composite of mining
explosions and earthquakes. Usual methods of outlier detection typically focus on the setting in
which observations are tested as outliers from a single population. However, in the case
considered here, there are two populations, and we wish to test whether a seismic event should be
considered to be an outlier from either or both of the populations. Actually, these results are
applicable to two or more populations but we focus on the case of two. Another point of interest
is the fact that the setting considered here differs from a common outlier scenario in which a
sample is given and the observations from the sample are tested to determine whether they should
be considered as outliers from the population from which the sample was obtained. This,
however, is not the scenario considered here. Specifically, in our setting, "pure" samples from the
populations in question are available, and our desire is to test a new observation as an outlier from
these populations. We will refer to this testing procedure as outlier testing throughout the report.

The classical method for outlier detection of the type we are addressing is the likelihood
ratio test (Wilks (1963), Caroni and Prescott (1992)), usually under the normality assumption for
the multivariate distributions of the training sample population and the outlier population, and
under the assumption of equal covariance of the two populations under the alternative hypothesis.
The resulting test is essentially the Hotelling's T? test (see Anderson (1984)). In our current
problem, because of the fact that there is not a single multivariate normal population associated
with the training sample, these assumptions are not satisfied. Thus, a direct application of the
standard likelihood ratio test does not seem possible. In spite of the importance of this problem,
to our knowledge little progress has been made in the literature. Baek et al. (1992) recently
considered the outlier testing in the seismic setting discussed here but in the special case in which

seismic events are tested as outliers from a single population, usually earthquakes. Baek et al.
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(1992) used a bootstrap approach to ascertain the distribution of the likelihood ratio when the
multivariate distribution associated with the training sample has both continuous components and
discrete components that have a finite number of possible outcomes. Some assumptions, such as
equality of covariances, are imposed to link the training sample population and the outlier
population. It is possible to apply the test of Baek et al. sequentially to each training sample
population, but this can be cumbersome, e.g. the training sample populations often have different
covariance structures. Furthermore, this procedure would result in substantial loss of power.

In this report we consider an approach to the practical problem at hand by considering
the combined population of seismic events of mining blasts and earthquakes as a mixture of two
populations. We propose a simple modified likelihood ratio test using bootstrap resampling that
appears to perform well in this setting. The methodology is presented in Section 2 for testing
outliers from a mixture population consisting of m components. Some numerical procedures are
addressed, including the use of the bootstrap for approximating the distribution of the test statistic
in Section 3. We also describe how the intensive computing time required for the bootstrap
resampling can be reduced without loss of accuracy when the training sample size is relatively

large. Section 4 provides the results of empirical studies. Some concluding remarks are given in

Section 5.

2. The Methodology

Suppose we have a mixture distribution I1of m populations, II;, i =1,..., m. In the
nuclear testing example mentioned above, m = 2 for mining explosions and earthquakes. Let d
be the dimension of the variables from the mixed population II, and for clarity in the presentation
assume all the distributions are continuous. Note that extensions to discrete or mixed cases are

mainly a matter of notational adjustments. The density of the mixture distribution is

f(z:8) =) pigi (= 6), (1)
=1
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m
where p; > 0 are mixing proportions with 3" p; =1, g; are the densities of I, 6; are unknown
=1

parameter vectors, & = (p1, ..., Pm, 61, ..,8/.Yandz = (z1,...,24)'. In the nuclear monitoring
scenario, we wish to test whether a new seismic event is an outlier to the mixture of earthquakes
and mining explosions. More generally, we wish to be able to test whether a new observation is
an outlier from the mixed population II.

Assume that we have a random training sample of size n from the mixture population
X,...X, €ll,

and that we are able to identify the associated source population for n; < n members of the

training sample. For convenience, let

in-1+11xk1‘—1+'-”""in ell;, fort =1,...,m, (2)

where 0 = kg < k1 < ... < kpy =ng, Le,n; =k — ki (normally > 10) data points are
identified to be from II;. Additionally, we allow for the possibility that the training sample
contains ny unlabeled observations from the mixture. In the notation of Redner and Walker
(1984) we assume the sample X1, ..., X, is of Type 4, i.e. the training sample consists of labeled
and unlabeled observations. The associated n;'s, ¢ = 1, ..., m are random variables following a
multinomial distribution, and they contain information about the mixing proportions. In this
notation, n = ny +ny. If in fact ny = 0, then the training sample consists of only labeled
observations and is a sample of Type 3 using the Redner and Walker notation. Now a new

observation X, is obtained. Given (2) we want to test the following hypotheses:
HO . Xn+1 ell

vs. 3)
H1 . .Xn+1 ¢ II.

The classical likelihood ratio test statistic is the ratio of the maximized likelihood functions

under Hy and H;. Under Hy the sample is of Redner and Walker Type 4, i.e. we assume that

17




X1, ..., X, are as before while Xn41 is unlabeled but from the same mixture distribution as
X1, ..., X, That is, we assume that all n+1 observations are from the mixture distribution

assumed under Hy with ny, of these labeled and ny + 1 unlabeled. The likelihood function under

Ho is

m k; n
Lo(6) = ;1-1,—"9%-; (H II pigi(xj;eo)( I1 f(Xs;o>)f<xn+l;o>.

i=1 j=ki+1 g=nr+1

Let h(x; o) be the density associated with the outlier population from which X, is sampled,
where o is an unknown parameter vector. Then the likelihood function under H is

Li(6,a) = 1‘ ] (H H p:9:(X ;1 6;) ) ( H fX3,9) (Xpi@). (4

1=1 j=hkisi+1 s=np+1

Difficulties arise when maximizing L; since there is only a single observation from the outlier
population so that generally no suitable MLE is possible for a, unless a is assumed to directly link
to 8. Any such linkage assumption is quite questionable since we now have m individual
populations that make up the mixture distribution. Furthermore, with only one observation it is
impossible to do any model checking of h(zx; o). To overcome these difficulties and to observe
the fact that little information is known about the outlier population from which X; is sampled,
we simply use a constant density h(z) = c over its practical (finite) support. Moreover, the
constant density is aiso assumed in the bootstrap procedure described below. Thus, dropping tne

constant from the likelihood ratio test statistic will not affect any test conclusions. Therefore we

let

n m k; n
L.1(6) = ——L';—,(H II p,-gi<xj;oi>)( 1T f(Xs;0)>,

i=1 j=ki1+1 g=nr+1

which is the likelihood based on the sample X}, ..., X, from the mixture. We define a simple

modified likelihood ratio test statistic

18



sup Lo(6)

W = 0€9N y (5)
sup L 1(8)
O

where © is the entire parameter space. It is easily seen that the departure of X1 from f will
reduce sup Lo(6) making W small. Hence the rejection region is of the form W < W, for some
bc e

W.,, picked to provide a level « test. Since the null distribution of W has no known closed form,
we suggest the use of the parametric bootstrap method to approximate it, as shown in the next
section. Based on the discussion here the use of W seems to be a reasonable approach, and in
Section < we demonstrate that W performs well under all the simulation scenarios considered.
Concluding this section, we point out that asymptotically W = f(X,,.;; 6,), asn — o0,
where @, is the MLE using the training sample only. See the Appendix for the proof. Moreover,
the bootstrap-one method described in the next section is essentially equivalent to using this

asymptotic result.

3. The Bootstrap and Other Computational Procedures

In this section we discuss numerical issues associated with the test procedure described in
Section 3. It should be noted that often both the numerator and denominator of W in (5) may be
difficult to obtain since the individual densities are mixture distributions. Recall also that for the
numerator we assume that X, ..., X, can be identified with their component popuiation, but
X1 is only known to be from the mixture, not the exact component. However, if we consider

the setting of multivariate normality for each component, i.e.,
gi(z; 6;) ~ N(ui, £:), (6)

and thus f(x; 8)is a mixture of m multivariate normal distributions, a numerical iteration
algorithm based on the EM algorithm has been developed by Redner and Walker (1984), for
maximizing Lo(6). They extended Hosmer's (1973) algorithm for the case of two univariate

normal components to the multivariate normal components setting, and in our simulation studies,
we have adapted their method. Note that with (6), supf 1()iseasily obtained. Using the
8eo

19



resulting estimator 8., as an initial value in the numerator, it only takes at most a few steps to

obtain convergence.

We now turn to bootstrapping the null distribution of W. We will employ the parametric

bootstrap based on the training sample Xi,...,Xn. The following algorithm is used which

mimics the original sampling plan.

Step 1:
Step 2:

Step 3:

Step 4:

Step S:

Use (2) to obtain (p;, Ui, fi) fort=1,...m.

For each integer b, b = 1, ..., B, draw a sample of size n. from the multinomial
distribution with B = (B;, ..., P,,)'. We observe the frequencies n l'bL, nQbL, e
and n"fL where n lbL + n.sz + ot nﬂi’L = n;. Additionally, we draw a sample
of size ny from the same multinomial distribution resulting in frequencies n 1'2,,

b

~ b " b oM : i b —_—
,uﬂd oo WheAenw — Mo T - N ny

b
UV ml T

Draw samples of size n’;Land nilz. from N (4, fi) fori=1,...,m. Theng
observations associated with frequencies n%;, ¢« = 1, ..., m are treated as labeled
samples in the analysis, while the ny observations corresponding to nb,,

i =1, ..., m are treated as unlabeled observations. These resampled data are
used to compute the test statistic in (5). This test statistic is

denoted by W', .

Draw a new, (n + 1)st, observation from the empirical mixture by randomly
selecting a single observation from the multinomial distribution in Step 2. This
multinomial will essentially select a component i between 1 and m, and we
generate an observation from the associated N (4;, fi) distribution.

Repeat Steps 2 to 4 B times (b=1,...,B). Then define W, to be the
(100c)th percentile of all W', Specifically, ifa = j/(B+1), then Wyis

the jth smallest value of {W;} bfl (see McLachlan, 1987). Statistical decisions

can then be made.
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Notice that when n is large the bootstrap scheme may require considerable computing
time. However, when n; are not very small, this computational burden can be avoided by
employing an approximate bootstrap scheme, called bootstrap-one. This technique uses the
original training sample in Steps 2 and 3 forallb=1,...,B. It effectively eliminates these two
steps and many calculations in obtaining W,.

The bootstrap-one method conceptually approximates the conditional distribution of W
given Xi,...,X,. When all n; are relatively large, the conditioning effect is minimal. The
accuracy and advantages of the bootstrap-one method are among the things studied in simulations

which are discussed in the next section.

4. Empirical Studies
In this section we report some results of a simulation study to illustrate the performances
of the new methods. In these simulations we focus on the case in which all training sample

observations are labeled, i.e. ny = 0.

Example 1. In this example, we choose m =1, d = 2, and n = 4050 that the training sample

is from a bivariate N(p, £), where
0 1 5
w=(0) ==(5 1) )

were used. Obviously, in this case since there is only one component in the "mixture”, all
observations in the training sample can be labeled, i.e.ny = 0. The reason for choosing m = 1 is
that in this case it is easy to apply the standard likelihood ratio test assuming that the outlier
population is normal with the same covariance ¥. In this case, there is a single training sample of
size n and an observation X, to be tested as an outlier. Baek et al. (1992) discusses the
generalized likelihood ratio test in this setting. In particular, the likelihood ratio statistic is given
by
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0sup Lo(6)

_ _6eo

sup L1(8,a) ’ @)
e

where L, (6, )is given in (4) and « is related to 6 in a certain way.

Specifically, & is the multivariate normal density associated with observation X1 and
a = (p2, E) is estimated by taking fl, = X,.1and taking $ to be the MLE obtained from the
training sample. Under the normality assumption in this example, the test statistic in (8) is known
to be distributed as Hotelling's 72 (e.g. Anderson, 1984). Baek et al. (1992) considered the
likelihood ratio in (8), where the multivariate random variables could be composed of both
continuous and discrete components. They approximated the distribution of X in this case using
the bootstrap procedure described here. They applied the bootstrap procedure to the special case
in which the distributions were multivariate normal and approximated the distribution of A using
the bootstrap procedure. Simulations have shown that the power of the test based on the
bootstrap is very similar to that obtained based on Hotelling's 7> in the multivariate normal case.
In this report all tests are based on the use of bootstrap resampling to approximate the distribution
of the test statistic. The test based on (8) will be called the "standard" likelihood ratio test.

Instead of including L; (6, ) in the denominator of (8) in this multivariate normal setting,
we could have used the test statistic given in (5) which is based on the use of a constant density
h(z) = c for over its support. The test statistic using (5) will be termed the "moditied" likelihood
ratio test. For each of these tests, whenever we approximate the distribution of the test statistic
by a full bootstrapping of n +1 observations, we will refer to this as the "full" procedure.
Alternatively, in each case we also consider the use of the bootstrap-one technique. In Table 1 we
denote them as "full" and "one" respectively.

Table 1 summarizes the simulation results of the two tests. One thousand replications

were used for each entry and we used B = 499. The power was obtained with N ((g),
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( _1‘5 —1'5>> as the outlier population. We have experimented with other covariance
values, including that in (7), and similar power patterns were observed.

First, we compare the standard and modified tests using full bootstrapping. In Table I, it
can be seen that the significance levels for both tests are close to the nominal level of a = .05
with the modified tests having slightly larger levels. Additionally, the powers of the two tests are
similar with the modified tests having somewhat larger power. Thus, the use of W in (5), which
appropriately reflects our ignorance about the outlier population, performs as well as the full
likelihood ratio.

Next, comparing "One" columns to "Full" columns, we observe that the bootstrap-one has
significance levels that are artificially high for smaller sample sizes. However, for large n (say >
100) the significance levels are of appropriate size. For these larger sample sizes the bootstrap-
one procedure tended to have higher power than obtained using full bootstrapping. Based on
these results and the computational burden associated with large n suggests that the bootstrap-
one is a viable alternative. Finally, notice that the bootstrap-one method is identical for the

standard and new tests. In fact, the identity can be shown analytically under normality. However,

the identity is not true in general.
Txample 2. In this example "ve consider the use cf the likelihood ratio test to test for outliers
from the mixture model in (1) with m = 2 and n = 60. Again we consider the case in which

d=2 and ny =0, and specifically, we assume that the component densities g; and go are

multivariate normal densities associated with a

and
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populations respectively.

Casea: p =p =.5.

We examine the power of the test for detecting outliers from
v ((Zas) (52)
population where k = 1,...,9. In Figure 1(a) we show data from a mixture of two populations
with p; = p» = 0.5 along with 5 outliers. In Figure 1(b) we show the same data with individual
observations labeled with regard to the associated component population or outlier population.
The outliers are indicated by solid dots. In Figure 1(c) we again show the labeled data along with
contours of the mixture population. Finally, in Figure 1(d) we show means and contours of the
two component populations and of the cutlier population. In Figure 2 we show the contcurs of
the mixture components as in Figure 1(d) along with the outlier means (1+k —35, 1 — (k- 35)),
k=1,..9. Also in this figure we show the contour of the outlier population for the case
k = 2, i.e. the meanis ( — 2, 4)'. In Table 2(a) n = 60 is used and the nominal level is @ = 0.05.
As can be seen, the significance level is close to the nominal level. Whenever the outlier
population is well separated from the component distributions of the mixture we have good power

while as would be expected the power lowers dramatically for £ near 5. The true powers for

k =1,2,3, and4 are the same as those for k = 9, 8, 7and 6 respectively, due to symmetry. The

empirical results appear to verify this fact.

Case b: p; = 0.25 and p; = 0.75.

In this case we consider the same scenario as Case a but with p; = 0.25 and p» = 0.75.
In Figure 3 we show the plots corresponding to Figuré 1 for the case in which p; = 0.25 and
p> = 0.75, and in Table 2(b) we show results corresponding to those in Table 2(a) for this case.
Again, we see that the significance levels are accurate and that powers are similar to those in

Table 2(a). It should be noted that due to smaller p; here, there was a very small fraction
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( < 0.2%) of all bootstrap simulation replications that did not converge with our current
program. This problem seems to become more serious when smaller values of n are used. In our
analysis we simply skip any bootstrap realization for which convergence was not obtained and
generate another one. Another possible approach would be to use the starting values as final

estimates for these bootstrap replications.

5. Concluding Remarks

In this report we have proposed a simple modified likelihood ratio test for multivariate
outlier detections. This new test is not only good for use in general outlier detection problems,
but especially applicable when the training sample population is a mixture of several populations.
In the new test no assumption is necessary for the covariance structure or any other moments of
the outlier population, and in fact no parametric modeling is required for the outlier pepulation.
Furthermore. although with weaker assumptions it is more powerful than the standard likelihood
ratio test in the simpler non mixture situation in which the standard test applies.

We have also investigated bootstrapping the distributions of the test statistics. The
computationally intensive resampling method seems to be quite effective. When the training
sample size is large, we have also suggested the bootstrap-one method, which significantly
reduces the computing time and seems to have somewhat more power.

It should be noted that the procedure could be extended to cover the case in which all of
the training sample observations are unlabeled. This, however, will require dealing with issues

such as the use of appropriate starting values and is not considered here.
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APPENDIX

In this appendix, we show that W ~ f(Xn11; 5n), as n — oo, where W is given in (5). Let

716) =m{Z 1)},
2(6) = In{Lo(0)} =7 1(6) +In{f(Xns1;6)}. (A1)

Suppose@ and 8,., satisfy the conditions that T (5 ) = sup T 1(8) and Lo(@n+1) =
fe®

sup Ly(6), respectively. Then fO(HnH) —0and? (9 ) = 0. Thus, from
feO

£ (§n+1) =/ gn) +0"(8.) En_l - gn) + smaller terms
0 0 0

= Z0n{f(Xner; O} _, + 22(8,,)(Bns1 — 8,) + smaller terms,

we have

~

1 — 0, = 0,(L), (A2)

since eg@m) =0, 66’(5,1) is of order Op(n), and %[ln{f(XnH; 9)}]|e=§'is O,(1). Now by
(A1) and (A2),

W = exp{fo(aml) -7 1(§n)}
= exp{L’o(b\n) + fé(an)(anﬂ —8,)+ 0,(3) -7 1(5”)}
= exp[In{ f(Xn+1; 0 }] +0,(3)

= f(Xns1i ) + Op(2),

completing the proof.
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Table 1. Comparisons of significant level and power of the standard likelihood ratio test
and modified likelihood ratio test, using two (Full and One) bootstrap approximations.

n Significance Level Power

Standard Modified Standard Modified
Full One Full | One | Full | One | Full | One
15 | .048 118 065 | 118 | .522 | .729 | .568 | .729
20 | .048 .100 063 | .100 | .541 | .709 | .588 | .709
25 |.036 .081 048 | 081 ].563 | .704 | .601 | .704
30 | .047 .084 051 | .084 | .579 | .718 | .609 | .718
50 | .046 064 050 | 064 | 626 | .696 | .645 | .696
100 | .056 059 | .057 1 .059 | 646 | .677 | .657 | .677
150 | .059 057 061 | .057 1 .655 | .703 | .665 | .703
s.e. .007 .015

Table 2a. Significance level and power of new test in Example 2;
p1 = pz = 0.5, n = 60, B = 199, 1000 replications

Level 050 (s.e. .007)

k 1 2 3 4 | 5 6 7 8 9
Power | 1.000 | .984 | .754 | 226 ] .031 | .231|.767 | .980 | 1.000
S.€. 001 | .004 | .014 | .013|.006 | .013 |.014 | .004 | .001

Table 2b. Significance level and power of new test in Example 2;
p1 =0.25, pp =0.75,n =60, B = 199, 1000 replications

Level 055 (s.e. .007)

k 1 2 3 4 5 6 7 8 9
Power | 999 | .070 | .709 | 245 | .042 | .242 | .701 | .972 | .999
s.e. 001 | .005 | .014 | .014 | .006 | .014 | .014 | .005 | .001
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3.0 Positive Orthant Alternatives

In previous applications of outlier tests a symmetric alternative region has been
assumed. This is, in general, not the best approach; and, it will clearly sacrifice
power, i.e., reduce the detection probability. Since in most cases some information
is known regarding the direction of the selected features relative to a nuclear
event, an alternative region can be defined which takes advantage of this
information. The resulting test would then be significantly more powerful. In this
section we introduce some methodology for addressing this difficult problem.

3.1 Background

Since it is quite possible that a nuclear event is likely to occur in a region where no
previous nuclear activity has transpired, a primary concern is to detect an unusual
event. Let the p-dimensional variable V = ("1,Va,...,Vp) characterize the
occurrence of an event. The V; will be referred to as "script" variables or
"features." Suppose that a training sample {V"}:1 is available from past events

and a new observation, V,,.1, is obtained which must be classified as to whether or
not it belongs to the same population as the training sample. Baek, et. al. (1992)
constructed a test for this situation by applying the parametric bootstrap (Efron
(1979)) to generalized likelihood ratios. ~ This approach, the bootstrapped
generalized likelihood ratio test (BGLRT), was shown to be applicable when the
observations are from either mixtures of discrete and normally distributed
continuous variables or from a multivariate normal distribution. Miller, et. al.
(1993) also showed that the BGLRT is also of utility when data are missing.

In the case where the observations are from a p-dimensional normal population,
the likelihood ratio test leads to the two-sample Hotelling 72 statistic and an F
statistic with p and 7 - p degrees of freedom. Bootstrapping this statistic amounts
to empirically determining the critical points of the distribution of the statistic
under the null hypothesis that the observation to be classified is a member of the
population of interest. Through Monte Carlo investigation, the performance of the
72 and the bootstrapped (either parametric or nonparametric) T2 can be found to
be effectively equivalent. Also at least in the one dimensional case, where exact
tests are available for comparison, the nonparametric bootstrapped T 2 can be
found to be quite robust to the effects of non-normality and to have reasonable
power when compared to the appropriate uniformly most powerful test.

This report will examine the case where the observations are from a p-dimensional
normal distribution. In this context, the 72 statistic is testing the null hypothesis
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that the mean of the population associated with the training sample is equal to the
mean of the population associated with the new observation versus the alternative
that at least one of the elements of the mean is different.

In the situation of monitoring nuclear proliferation, it is possible that at least the
order relationships of the individual features of the two populations may be known
a priori. For example, if the observations were from a single monitoring station
and were three dimensional, consisting of the frequency and the magnitude of the
real and complex poles of an AR(3) model, then through analysis of existing data it
is known that the complex pole of an explosion has a larger magnitude than the
complex pole of an earthquake. Further, the frequency of the complex pole for an
explosion will be less than that of an earthquake. Thus in testing the hypothesis
that a given event is an earthquake versus the alternative hypothesis that it is an
explosion, one would want the alternative region focused on large poles and small
frequencies rather than simply "extreme poles" and "extreme frequencies." Such a
region is called a "focused" alternative region.

It is desirable to take advantage of this before-hand knowledge by developing a
test of hypothesis which is more focused than the standard two-sample T 2,
Perlman (1969) developed theory for a single-sample T? with a one-sided
alternative. In the single-sample problem, the null hypothesis of the standard T* 2is
that the mean of a set of random observations is equal to zero versus the
alternative that at least one of the elements of the mean is not equal to zero. His
work was taken by Tang (1994) and applied to the alternative hypothesis that the
sum of the elements of the mean is non-negative, a so-called half space alternative.

This report will expand the single-sample 72 with one-sided alternative to the
situation where the alternative hypothesis is that each element of the mean is
positive. These results will then be extended to the special two-sample T?
situation of interest in monitoring nuclear proliferation, in which the second sample
consists of a single observation. Some Monte Carlo results will then be presented
to illustrate the gains in power that can be achieved as contrasted with the standard
two-sample 72. No real data will be processed for this report. However,
examples using real data will be included in the next report.

3.2  The Single-sample T? with a Half Space Alternative

A half space is a set of the form {v | v'u > 0} for some fixed vector u. A set is
one-sided if it is contained in the interior of a half space. A cone means a
positively homogeneous, closed, and one-sided set. For the one-sample situation,
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it is assumed that there is a sample of size n from a p-dimensional normal with
unknown mean g and covariance $. The problem is to test the null hypothesis
that s = 0 versus the alternative hypothesis that u € C, where C denotes a cone.

Perlman derived the likelihood ratio statistic to be

Uy A,0) = [lyl5 (1 + lly - x| ey

where x denotes n? times the sample mean, 4 is (7 - 1) times the sample
covariance matrix, and y is the vector in C which is closest to x in terms of the

Mahalanobis distance:
Iy - x| = -y 41(x-y). @)

Tang proved that if C contains an open set, and if H* is any half space containing
C, then the test using the statistic U(x,y,4,H ") is uniformly more powerful than the
statistic U(x,y,4,C). He used a result of Perlman to calculate critical points for the
statistic  U(x,y,4,H*) and compared, via Monte Carlo results, the power of
U(x,y,A,H") versus the standard 7°.

3.3  Extension to the Positive Orthant Alternative Hypothesis

It is not possible to analytically calculate critical points for the test statistic
U(x,y,4,0") in which C is the positive orthant, Q*, where all the elements of the
mean are non-negative. However, bootstrapping provides a means of estimating
the critical points of the statistic under the null hypothesis that the mean is zero.
The process for conducting a test of size a using nonparametric bootstrapping is
described in the following steps.

Procedure for the Bootstrap Test of the Null Hypothesis that the Mean of a
Sample is Zero Versus the Alternative that the Mean is in the Positive Orthant

1. Compute the U(x,m,4,0") statistic using the original set of
observations.

2. Subtract the mean of the sample from each of the observations, leaving
the n residuals.
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3. Draw with replacement a random sample of size n from the residuals
(for which the null hypothesis holds conditionally).

4. For that sample, compute the statistic U(x*,m* A*,0"), where the *
denotes the same quantities in (1) evaluated on the (re)sampled residuals.

5. Repeat steps 3 and 4 a total of B times and save the values of U*.

6. Calculate the (1 - a)th quantile of these B realizations, u;.,, the
bootstrap estimate of the critical value.

7. If the statistic of step 1 equals or exceeds uj.,, the null hypothesis is
rejected in favor of the alternative that u € Q"

The main difficulty with carrying out the preceding steps is in the calculation of the
statistic given by (1). Ifall the elements of the vector x are non-negative, theny =
x, the denominator of (1) is unity, and the calculation involved is the same as that
associated with the standard 72 statistic. If, however, some or all of the elements
of x are negative, then it remains to find the vector y in Q" which is closest to x in
terms of the Mahalanobis distance. To develop a "feel" for the process the
methodology for the two dimensional case will first be described and then a
general procedure will be stated and summarized in a series of steps.

3.3.1 Calculation of U(x,y,4,0") in Two Dimensions

In the case where p = 2, let the y; axis be the abscissa and the po axis be the
ordinate. The positive quadrant, where values of pjand pg are positive, is labeled
as quadrant 1. Quadrants 2 - 4 are found by moving counter-clockwise. So, if the
first element of x is positive and the second element is negative, then x is located in
quadrant 4, below the positive x; axis. This situation is depicted in Figure 1,
which shows x at the center of an ellipse which is touching the 1 axis at the point
y1 = (1,0). The shape of the ellipse is governed by the elements of A1l The
vector y; is the closest point to x on the p; axis. It is the point which minimizes
the distance:

q(y1) = (x - (#1,0)) 4 (x - (1,0)). €)

If the elements of the 4! matrix are denoted by cj;, i,j = 1,2, then the value of y;
which minimizes (3) can be found to be:
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¥1 = (cr2xe +cnixy)/en. “4)

In the figure, (11,0) is located on the non-negative part of the  axis, and thus is a
candidate to be the closest point in Q" to x. In general, if y; were found to be
negative, then the point (0,0) would be the point in Q" closest to x and on the
axis . There is also a point y; = (0,y2) which is the closest point to x on the
axis. It is the point which minimizes the distance:

q(y2) = (x - (02))4 (x - (0y2)), %)
and the value of yo which minimizes (5) is:
Yo = (c12%1 + canx9)/c22. (6)

If y, were found to be negative (which it would be in Figure 1), then the point
(0,0) would be the point in O* closest to x and on the p, axis. The value of y that
is used in (1) is the one associated with the smaller of g(y1) and g(y2); otherwise,
y = 0, if neither y; or ys are in O*.

In summary, if x does not fall in the first quadrant, then depending on the quadrant
in which it does fall and its sample covariance structure, there may or may not be a
point y on the border of Q" other than the point (0,0), in which case U(x,y,A4,0")
is equal to zero. The algorithmic approach for calculating the statistic Ux,y,4,0%)
in two dimensions is summarized in the following steps:

Algorithm for Calculating U(x.y.4.Q") in Two Dimensions
1. Sety =0 and dpi, = ”m“f1
2. Using (4), calculate y;. If y; <0, go to step 4.
3. Calculate g(y;) using (3). Sety = (31,0)' and dnin = q(y1)-
4. Using (6), calculate yo. If y» <0, go to step 6.
5. Calculate g(y2) using (5). If q(y2) < duin, set'y = (02)".

6. The current value of y is used to calculate U(x,y,4,0") using (1).
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3.3.2 Calculation of U(x,y,4,0") in p-Space

In p-space, the process of calculating the statistic U(x,y,4,0") is a generalization
(albeit more complicated), of what is done in the case where p = 2. Again, if x is
in the positive orthant Q0*, then y = x and U(x,y,4,0") is equal to the standard 72
statistic. Otherwise, the process is to find one or more points located on the
periphery of QF, in the highest possible dimensional subspace, which are
candidates in the positive orthant, and then determine which of those points is
closest to x. This is accomplished by initially searching in (p - 1) space, then (p -
2) space, and so forth, until either a point is found or else it is determined that
there is no positive point on any of the p axes which is closest to x.

Denote by ygp a vector with the jth element being zero, ie, yp =
1Y25--Yj-1,00j+1,....0p) . The values of the elements of yg are those which
minimize the distance in the following equation:

q(yp) = (x -y A (x - yp). @)

The elements of each yg are obtained in the following manner. As before the
elements of 4! are denoted by ¢y, i,j = 1,2,...,p, and set

d=4"x. ®

Let C( denote the (p - 1) x (p - 1) matrix obtained by deleting the jth row and
column of 4!, and designate by d() the (p - 1) vector realized when the jth
element of d is deleted. The elements yi)o,...0:1.0+1,....)p are found,
respectively, as the (p - 1) elements of the vector

-1
2y = Cgy dgy- ©